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Abstract—Personalized services are increasingly critical for au-
tonomous systems such as smart vehicles, where Large Language
Models (LLMs) enhance the driving experience. However, effi-
ciently deploying and continuously updating these models is chal-
lenging due to resource constraints and dynamic environments.
Existing approaches often neglect personalization and effective
cross-edge collaboration, leading to inconsistent service quality
and inefficient resource utilization. To address these gaps, we
propose a vehicle-edge-cloud collaborative framework centered
on our Intent-Driven Multi-Agent Communication (IDMAC)
algorithm. IDMAC intelligently coordinates the LLM update life-
cycle. It utilizes an intent encoder to model the short-term goals
of each edge server from its trajectory. This explicit intent then
guides attention mechanisms to facilitate efficient, goal-aligned
communication, reducing network overhead and focusing on
relevant information. This allows for the dynamic scheduling and
routing of parameter-efficient model patches. In our architecture,
lightweight models are deployed on vehicles, edge servers handle
specialized fine-tuning, and the cloud periodically aggregates
global knowledge to create unified updates. Experimental results
show that the proposed framework significantly improves service
quality and adaptability. IDMAC also strengthens inter-edge
collaboration while reducing latency and energy consumption.

Index Terms—Edge Network, LLM, Multi-Agent Reinforce-
ment Learning, Communication

I. INTRODUCTION

With the rapid development of Intelligent Transportation
Systems (ITS), autonomous driving, and smart cockpits, in-
vehicle artificial intelligence systems are evolving from task-
specific models to general-purpose large models. Large Lan-
guage Models (LLMs) [1] demonstrate strong reasoning and
generalization capabilities. By integrating multimodal data
such as speech, vision, and navigation, these models enable
natural human–machine interaction, complex scenario reason-
ing, and dynamic decision-making. Such advances provide
new support for safe autonomous driving and significantly
improve the intelligence of vehicle services [2].

Despite these advantages, deploying LLMs in vehicles re-
mains highly challenging [3], [4]. Vehicle hardware platforms
face strict limitations in computation, memory, and energy
consumption, which makes it infeasible to run billion-scale or
trillion-scale models directly on vehicles. Meanwhile, many
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in-vehicle applications, such as driving assistance, voice in-
teraction, and risk prediction, require real-time responses and
personalized adaptation. Traditional cloud-based paradigms
are insufficient, as they introduce excessive latency, high band-
width consumption, and privacy risks. Consequently, efficient
deployment and personalized updating of LLMs in vehicular
edge networks has become a key research problem.

Recent works have mainly explored two research direc-
tions: lightweight large models with incremental updates
and cloud–edge–end collaborative optimization. Regarding the
former, existing works adapt the pruning, quantization, and
knowledge distillation to reduce model complexity. Parameter-
Efficient Fine-Tuning (PEFT) [5] methods, such as LoRA,
allow updating only small adapter modules instead of the
entire model, making incremental updates feasible and sig-
nificantly reducing computation and communication costs.
However, PEFT-based models deployed at different edge nodes
may exhibit inconsistent performance. Expert models trained
with long-term local data often surpass general foundation
models with LoRA adapters, which creates a trade-off between
reduced latency and slight accuracy degradation.

For edge collaboration, Vehicular Edge Computing (VEC)
is regarded as a promising solution to the constraints of vehicle
hardware. Research in this area has focused on inference
offloading, federated learning and edge caching [6], which en-
able data aggregation while preserving privacy, and offloading
reduces inference latency. However, most of these approaches
target one-time inference tasks rather than continuous lifecycle
updating of LLMs. Existing Over-the-Air or caching solutions
often ignore the structural properties of LLMs and rarely
support user-level personalization [7]. In addition, they cannot
effectively adapt to dynamic conditions such as vehicle mo-
bility, unstable networks, and heterogeneous edge resources.

More recently, Multi-Agent Reinforcement Learning
(MARL) has been introduced to optimize model updating
and resource allocation in cloud–edge networks [8]. In these
approaches, edge nodes are modeled as agents that make local
decisions based on network states, user demands, and system
efficiency. This paradigm enables distributed optimization,
yet still encounters several limitations. Communication
overhead between agents is high, which reduces scalability.
Personalization for diverse vehicles remains insufficient, as
most methods focus on global aggregation. Furthermore,
inconsistencies such as model drift and version mismatch may
emerge across cloud and edge nodes. These issues highlight
that although progress has been achieved in lightweighting
and edge collaboration, personalized updating and systematic
optimization within the cloud–edge–end architecture remain
unresolved.
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Fig. 1. LLM-based edge-enabled autonomous vehicle intelligent Systems.

Our research is motivated by the key question: how to
realize personalized LLM updates in resource-constrained and
dynamic vehicular edge networks, while ensuring efficient
collaborative strategies across cloud, edge, and end devices?
The key challenges can be summarized as follows. (i) How to
design a unified vehicle-edge-cloud architecture that holisti-
cally manages the LLM service lifecycle under the constraints
of a dynamic vehicular environment. (ii) How to deliver
personalized, incremental model updates to individual vehicles
efficiently, balancing the need for local adaptation with global
consistency while minimizing resource consumption. (iii) How
to enable intelligent collaboration among distributed edge
servers to make coordinated decisions on resource allocation
and update scheduling in real-time.

To address these problems, we propose a collaborative
optimization framework for vehicular LLMs that integrates
personalized updating, edge collaboration, and cloud coor-
dination. The framework is built upon MARL and intent-
based communication, which together enable distributed yet
coordinated decision-making. Our main contributions are sum-
marized as follows:

• Cloud-Edge-Vehicle Collaborative Framework: We
propose a comprehensive framework for LLM updates
in intelligent vehicular networks, integrating personalized
updating and edge collaboration to address resource con-
straints and dynamic environments.

• Personalized Incremental LLM Updating Scheme:
We formulate an efficient update mechanism based on
PEFT and LoRA injection, coupled with task capability
abstraction, to enable personalized model updates while
minimizing computation and communication costs.

• Intent-Driven Multi-Agent Communication (IDMAC)
algorithm: We propose IDMAC, which acts as both
scheduling and update-control, selecting and routing
PEFT adapters, triggering OTA to vehicles, and coor-
dinating edge–cloud synchronization, thereby coupling
intent-driven decisions with parameter-efficient updating.

• Extensive Experimental Validation: We conduct com-
prehensive experiments demonstrating that our proposed
framework, IDMAC, significantly improves service qual-

ity, adaptability, and achieves superior convergence, re-
duced latency, and lower energy consumption in dynamic
vehicular networks compared to existing baselines.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work on LLM updating and col-
laborative edge intelligence. Section III presents the overall
system model and formulates the optimization problem for
vehicle–edge–cloud collaborative updates. Section IV intro-
duces the proposed Intent-Driven Multi-Agent Communication
(IDMAC) framework. Section V provides simulation settings
and performance evaluation results. Finally, Section VI con-
cludes the paper and discusses potential directions for future
work.

II. RELATED WORK

A. System Foundations and Scheduling for LLM on Edge

Research on deploying large language models at the edge
has centered on the goals of high throughput and predictable
latency. Advances in runtime systems have refined memory
and batching strategies such as paging key–value caches to
reduce fragmentation and increase batch efficiency [9], or
reducing overhead with control flow and constrained de-
coding [10]. On the scheduling side, novel systems address
workload heterogeneity by disaggregating prefill from decod-
ing [11], adopting chunked-prefill schedules [12], and enabling
cross-instance rescheduling [13]. More recently, the demand
for personalization has driven serving stacks toward a shared
base model with many lightweight adapters. The unification
of paging for adapter parameters [14] and cross-adapter batch-
ing [15] demonstrate that thousands of LoRA-style modules
can be co-hosted efficiently. These efforts have demonstrated
strong results within single clusters. Although initial attempts
at cloud–edge–device collaboration are beginning to emerge,
existing approaches do not yet provide a unified framework for
coordinating personalization and scheduling under bandwidth
and service-level constraints.
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B. Personalization in the Internet of Vehicles with Semantic
Intent

In vehicular networks, personalization is essential but re-
mains challenging due to highly dynamic environments and
non-IID [16] data distributions. Conventional personalized
federated learning techniques address this issue by implicitly
tailoring models to individual distributions [17], but they
rarely provide explicit representations of user preferences or
goals. To overcome this limitation, recent work has integrated
language and vision–language models into the driving stack.
Drivelm [18] captures the dependencies among perception,
prediction, and planning for reasoning-oriented evaluation.
Lingoqa [19] exposes gaps between current models and
human-level performance. Field experiments demonstrate that
natural-language preferences can be mapped into executable
driving commands, with memory mechanisms maintaining
user-specific consistency [20]. Collectively, these studies high-
light the potential of semantic and intent-based approaches
to enhance personalization in the internet of vehicles (IoV),
though how such representations can be translated into mod-
ular updates and coordinated orchestration across edge re-
sources is still unresolved.

C. Collaboration across Cloud, Edge, and Devices

When model update has been completed, the main challenge
often shifts to how data and intermediate representations
are exchanged among cloud, edge, and device nodes. VS-
SN-DTDE [21] emphasizes offloading and caching, where
edge servers determine when to serve from cache or for-
ward queries to the cloud, thus improving both quality of
service (QoS) and cost efficiency. VELO [22] introduces a
databased cloud–edge framework that caches LLM responses
at the edge and uses Multi-Agent Reinforcement Learning
(MARL) to decide between edge retrieval and cloud querying,
improving QoS under cost and latency constraints. Other work
adopts adaptive split [23], allowing weaker devices to process
shallow network segments while offloading deeper layers,
with reinforcement learning (RL) adjusting split points and
bandwidth allocations in real time. U-SFL [24] further reduce
communication overhead while safeguarding privacy. Looking
further ahead, foundation-model–native perspectives argue that
cross-tier collaboration and intent-aware control should be
embedded in system design from the outset, especially in
the context of 6G, where distributed, multimodal training
and serving are expected to be intrinsic [25]. Taken together,
these contributions supply valuable building blocks—caching
and offloading, adaptive split strategies, and FM-native ar-
chitectures. But these methods remain fragmented. A unified
and lightweight intent layer that converts semantic user or
task descriptions into coordinated adapter-level updates, cross-
node scheduling, and globally consistent optimization is still
missing.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the cloud-edge-end vehicular
LLM service system and then formulate the optimization
problem. The system design to support personalized and

TABLE I
SUMMARY OF NOTATIONS IN SYSTEM MODEL

Notation Meaning
N Set of vehicles
M Set of edge servers (edge clouds)
K Set of service types (demands)
an,m(t) Association of vehicle n with edge m at time t (binary)
rn,k(t) Indicator if vehicle n requests service k at t
vm,k(t) Version index of service k deployed at edge m
θk,v Capability parameter of service k version v
φn,k(t) Demand intensity of vehicle n for service k
q̄k Maximum QoS score for service k
αk Growth rate parameter in QoS function
qn,k(t) Perceived QoS of vehicle n for service k at t
Sn,k(t) User task score of vehicle n for service k at t
dm,n(t) Distance between vehicle n and edge m
hm,n(t) Channel gain between vehicle n and edge m
Bul

m,n(t) Uplink bandwidth allocated to vehicle n

Bdl
m,n(t) Downlink bandwidth allocated to vehicle n

Pul
n (t) Uplink transmit power of vehicle n

P dl
m (t) Downlink transmit power of edge m

γul
m,n(t) Uplink SNR of vehicle n–edge m link

γdl
m,n(t) Downlink SNR of edge m–vehicle n link

Rul
m,n(t) Achievable uplink rate

Rdl
m,n(t) Achievable downlink rate

Rbh
m,m′ (t) Backhaul rate between edges m and m′

Sul
n,k(t) Uplink request size of vehicle n for service k

Sdl
n,k(t) Downlink response size for service k

Sbh
m,m′,k(t) Module transfer size between edges m and m′

Ck,v Compute cycles required by service k version v
fm,n(t) CPU/GPU frequency share at edge m for vehicle n
T comm
n,m,k (t) Communication latency

T bh
m,m′,k(t) Backhaul latency

T proc
m,n,k,v(t) Processing latency for service k version v

Eul
n,m,k(t) Uplink transmission energy

Edl
m,n,k(t) Downlink transmission energy

Ebh
m,m′,k(t) Backhaul transmission energy

Eproc
m,n,k,v(t) Processing energy at edge m

κm Hardware energy coefficient of edge m
λT , λE Weights for latency and energy in objective
U System utility (QoS–latency–energy trade-off)

versioned LLM-based services under practical constraints of
computation, communication, and energy. We first describe the
system overview and then detail the service, communication,
latency, and energy models. Finally, we provide the problem
formulation that captures the trade-off among service quality,
latency, and energy consumption.

A. System Overview

We consider a cloud–edge–end vehicular network over
discrete time slots t = 0, 1, 2, · · · , T . Let N be the set of
vehicles and M be the set of edge clouds. K denotes the set
of one-to-one mapping between demand and service types,
each corresponding to a user demand (e.g., traffic compliance,
navigation, auto-parking, entertainment). Each vehicle can be
associated with at most one edge server in a given time slot. A
binary variable an,m(t) captures the association of vehicle n to
edge m at time slot t. Each demand type k ∈ K corresponds
to a unique service offered by the vehicular or edge LLM,
where services can exist in multiple versions (e.g., different
LoRA modules or incremental model updates).
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B. Service Model

We define the service model in the vehicle-edge-cloud ar-
chitecture. The model describes how vehicle demands are met
by different service versions deployed at edge servers, and how
the service quality (QoS) evolves with model improvement.

1) Model Improvement: Model improvement refers to the
incremental updates applied to service models, improving
their capability and performance. Each service version v is
associated with a capability parameter θk,v that increases with
the version, leading to enhanced service quality. When a new
version v+1 is cached, it offers better performance compared
to version v, contributing to higher Quality of Service (QoS)
for the vehicle.

θk,v+1 > θk,v, ∀v ∈ Vk (1)

The improvement in service quality due to the model version
update is captured by the difference between the new and old
service quality values:

∆qn,k(t) = qn,k,new(t)− qn,k,old(t) (2)

This relationship ensures that each new model version
provides an improvement in service quality. The QoS increases
as the model’s capability increases, but it follows a diminish-
ing return curve. The non-linear relationship between model
improvement and QoS is given by:

qn,k(t) = q̄k
(
1− exp

(
−αk[θk,v − φn,k(t)]+

))
(3)

where θk,v represents the model’s capability, and φn,k(t) is the
demand level for the service. This formula indicates that while
model improvement leads to higher QoS, the improvement is
most significant at lower version levels and saturates as the
version number increases.

2) User Task Score: The user task score, Sn,k(t), quantifies
the satisfaction of the vehicle user based on the service
provided. It combines the perceived service quality (QoS) with
the latency and energy consumption during the task execution.

Given the QoS model, the user task score is defined as:

Sn,k(t) = wq · qn,k(t)− wt · Tn,k(t)− we · En,k(t) (4)

where wq, wt, we are the weights for QoS, latency, and energy,
respectively. Tn,k(t) is the latency experienced by the vehicle
user when accessing service k. En,k(t) is the energy con-
sumption for processing and communication during the service
execution.

The user task score provides a balanced measure of how
well the service satisfies the vehicle’s requirements, consid-
ering both the improvement in the model and the associated
time and energy costs.

3) QoS and Latency: The Quality of Service (QoS) is a
function of the model’s version and the vehicle’s demand for
a particular service. As shown in the previous sections, when
a vehicle requests a service, the QoS depends on the model’s
capability and the level of demand. However, latency also
plays a crucial role in determining the perceived QoS.

The latency Tn,k(t) for a vehicle to receive a service
depends on multiple factors, including the communication
delay between the vehicle and the edge server, the processing

time at the edge, and any backhaul delays. The end-to-end
latency is given by:

Tn,k(t) = Tcomm(t) + Tproc(t) + Tbh(t) (5)

where Tcomm(t) is the communication latency, which depends
on bandwidth and signal strength. Tproc(t) is the processing
latency at the edge server. Tbh(t) is the backhaul latency if
modules are exchanged between edge servers.

Reducing latency improves the user’s task score as it directly
impacts the service delivery speed, making it crucial to balance
the QoS improvement with the delay constraints.

4) Model Improvement and Task Score Trade-off: While
improving the model version enhances QoS, it often comes
with an increased computational and communication cost,
which can affect latency and energy consumption. Hence, op-
timizing the task score requires balancing model improvement
with the associated delays and energy consumption.

In practice, a trade-off must be found between improving the
model and minimizing latency and energy costs. This balance
is essential for achieving the best possible user experience
while maintaining efficient use of resources. The vehicle-edge-
cloud architecture dynamically adjusts this trade-off based on
the specific demands of the task, ensuring that users receive
the highest quality service within the constraints of the system.

C. Communication Model

Vehicles communicate with edge servers via wireless links.
The large-scale path loss for vehicle n to edge m is
L(dm,n(t)) = G0dm,n(t)

−η , with distance dm,n(t), expo-
nent η > 2, and constant G0. Including fading gm,n(t)
with E[|gm,n(t)|2] = 1, the effective channel gain is
hm,n(t) = L(dm,n(t))|gm,n(t)|2. Given uplink/downlink
bandwidths Bul

m,n(t), B
dl
m,n(t) and transmit powers P ul

n (t),
P dl
m(t), the SNRs are:

γul
m,n(t) =

P ul
n (t)hm,n(t)

N0Bul
m,n(t) + Iul

m,n(t)
, (6)

γdl
m,n(t) =

P dl
m(t)hm,n(t)

N0Bdl
m,n(t) + Idl

m,n(t)
, (7)

where N0 is the noise spectral density and Iul/dl
m,n(t) is interfer-

ence. According to [26], the achievable uplink and downlink
rates are:

Rul
m,n(t) = Bul

m,n(t) log2
(
1 + γul

m,n(t)
)
, (8)

Rdl
m,n(t) = Bdl

m,n(t) log2
(
1 + γdl

m,n(t)
)
. (9)

Edges may also exchange modules or updates via backhaul
links. The achievable rate between edges m and m′ is

Rbh
m,m′(t) = Bbh

m,m′(t) log2
(
1 + γbh

m,m′(t)
)
. (10)

D. Latency Model

For a request of size Sul
n,k(t) and response of size Sdl

n,k(t),
the communication latency is:

T comm
n,m,k(t) =

Sul
n,k(t)

Rul
m,n(t)

+
Sdl
n,k(t)

Rdl
m,n(t)

. (11)
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If an edge fetches a module of size Sbh
m,m′,k(t) from peer

m′, the backhaul latency is

T bh
m,m′,k(t) =

Sbh
m,m′,k(t)

Rbh
m,m′(t)

. (12)

For version v, let Ck,v denote required computation cycles.
Edge m allocates compute frequency fm,n(t) to vehicle n.
The processing latency is

T proc
m,n,k,v(t) =

Ck,v
fm,n(t)

. (13)

Thus, the end-to-end latency is the sum of communication,
optional backhaul, and processing latencies. This reflects the
joint influence of wireless resources and computational allo-
cation.

E. Energy Consumption Model

Both communication and computation consume energy. The
uplink and downlink transmission energies are:

Eul
n,m,k(t) = P ul

n (t)
Sul
n,k(t)

Rul
m,n(t)

, (14)

Edl
m,n,k(t) = P dl

m(t)
Sdl
n,k(t)

Rdl
m,n(t)

. (15)

The backhaul energy can be calculated as follow:

Ebh
m,m′,k(t) = P bh

m (t)
Sbh
m,m′,k(t)

Rbh
m,m′(t)

. (16)

The computation energy at edge m follows a standard
CMOS model with coefficient κm > 0:

Eproc
m,n,k,v(t) = κmfm,n(t)Ck,v. (17)

This highlights the fundamental trade-off: higher frequen-
cies reduce latency but increase energy consumption.

F. Problem Formulation

We formulate a joint optimization problem to maximize the
overall system utility, which is designed to reflect the end-user
experience by balancing three critical and often competing
objectives. This utility is expressed as the minimization of
a weighted cost function comprising: 1) Service Quality,
by maximizing the perceived Quality of Service (QoS) to
ensure accurate and relevant LLM responses; 2) Service
Responsiveness, by minimizing end-to-end latency, which is
crucial for real-time interactions; and 3) System Efficiency,
by reducing energy consumption for sustainable operation.
Let πn,m(t) ∈ [0, 1] denote the soft association between
vehicle n and edge m at time t, and vm,k(t) the version
index of service k at edge m. The decision variables also
include bandwidth allocations Bul

m,n(t), B
dl
m,n(t), frequency

allocations fm,n(t), and transmission powers P ul
n (t), P dl

m (t).
The optimization problem is expressed as:

Ps : min
{π,v,B,f,P}

α
∑
t,n,k

(
− rn,k(t) qn,k(t)

)
(18)

+β
∑
t,n,k

T e2e
n,m,k(t)

+γ
∑
t,n,k

(
Eul
n,m,k(t) + Edl

m,n,k(t) + Eproc
m,n,k,v(t)

)
subject to:

C1 :
∑
m∈M

πn,m(t) = 1, 0 ≤ πn,m(t) ≤ 1, ∀n, t (19)

C2 :
∑
n∈N

(
Bul
m,n(t) +Bdl

m,n(t)
)
≤ Bmax

m ,∑
n∈N

fm,n(t) ≤ fmax
m , ∀m, t (20)

C3 : 0 ≤ P ul
n (t) ≤ Pmax

n , 0 ≤ P dl
m (t) ≤ Pmax

m , ∀n,m, t
(21)

where α, β, and γ are nonnegative weights controlling the
trade-off between service quality, latency, and energy con-
sumption. This simplified formulation preserves the key sys-
tem trade-offs while ensuring tractability for reinforcement
learning-based optimization.

IV. INTENT-DRIVEN MULTI-AGENT COLLABORATION
FRAMEWORK

The proposed method operates in a cloud-edge-end collab-
orative architecture where the IDMAC framework serves as
the intelligent decision-making core to orchestrate the LLM
service update lifecycle. Each vehicle generates a service
request d = (k, s, I, r) based on mobility traces. Edge servers,
acting as MARL agents, make decisions am(t) based on
local observations and messages. Crucially, these decisions
do not perform the model training itself but rather manage
the logistics of the updating process. The agents’ actions in
task migration, resource allocation, and patch routing directly
control how local data is collected for fine-tuning, where model
updates are generated, and when personalized service patches
are disseminated to vehicles. For instance, if a requested
function is available locally, the edge processes it; otherwise,
it forwards the request. For primary functions, the edge also
delivers a patch to the vehicle via OTA. Interaction logs are
periodically uploaded to the cloud for global fine-tuning and
subsequent update distribution. The reward function integrates
task score, system cost, and user capability gain, guiding
the policy to learn an optimal strategy for balancing service
quality with the costs of updating. The pseudo-code for this
collaborative process is detailed in Algorithm 1.

A. Dec-POMDP Formulation for Cloud–Edge–Vehicle LLM
Services

We cast the cooperative multi-edge scheduling, task migra-
tion, and model updating problem into a decentralized partially
observable Markov decision process (Dec-POMDP). The tu-
ple is ⟨I,S, {Oi}i∈I , {Ai}i∈I , T ,R,Z, γ⟩, where agents are
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Algorithm 1 Collaborative Cloud–Edge–End Procedure for
Versioned LLM Services
Input: Region mobility traces {GPS(n, t)}; service set K;

edgesM; initial capability vectors {cm(0)}; request gen-
erator p(k); return-flag rule r(k, patch); resource budgets
{Bul/dl, fmax, Pmax}; update periods Tedge, Tcloud.

Output: Association, resource and version decisions π; up-
dated edge/vehicle model versions; buffered logs.

1: Initialize vehicle models (base adapters), edge models
(primary functions), cloud full model; empty buffers.

2: for t = 0, 1, . . . , T do
3: Task generation: Each vehicle n samples a request type

k ∼ p(k) and dialogue tuple d = (k, s, I, r), where r=1
if no local patch of k is installed, else 0.

4: Association: Create/refresh link between vehicle n and
a serving edge m (policy πassoc).

5: Local observation at edge m: Om(t) =
{cm(t), fixed-size {(id, d)}}.

6: Inter-edge messaging: Edge m encodes message
um(t) from {Om, history} and broadcasts/receives
{um′(t)}.

7: Decision: Produce joint action am(t) =
{e1, . . . , e|Om|, a

comp, acomm} using {Om, {um′}}.
8: Resource adaptation: Apply acomp, acomm to reallo-

cate f,B, P subject to budgets.
9: Patch routing (edge→edge): If needed, send primary-

function patch of type k to a peer expert edge; receive
patches and update cm(t) and answerable list.

10: Edge–vehicle interaction:
11: if r=1 then
12: if k in edge m’s answerable list then
13: Serve on m and return result to n;
14: else
15: Forward to expert edge, and return result to n;
16: end if
17: end if
18: Compute task score qn,k(t) and latency/energy; if k is

m’s primary function then OTA a patch to vehicle n.
19: Append (d, result,metrics) to edge buffer.
20: Periodic maintenance:
21: if t mod Tedge = 0 then
22: Upload buffered Q&A to cloud (compressed/filtered);

clear buffer.
23: end if
24: if t mod Tcloud = 0 then
25: Receive cloud primary-function updates and refresh

local models.
26: end if
27: Reward: R(t) = Rscore − Rcost + Rcapability (for

learning/ablation).
28: end for

edge servers I ≡ M, time is slotted t = 0, 1, . . . , T , and
γ ∈ (0, 1] is the discount factor.

The global state st ∈ S aggregates wireless, compute,

traffic, and model-version information:

st=
(
{hm,n(t)}, {Bul/dl

m (t)}, {fmax
m }, {vm,k(t)},

{qreq
n,k(t)}, {R

bh
m,m′(t)}, queues, cloud pkg

)
,

(22)

where qreq
n,k(t) denotes the request indicator or rate for vehicle

n and service k, vm,k(t) is the installed version at edge m,
hm,n(t) and Rbh

m,m′(t) are wireless and backhaul conditions,
and queues capture pending requests or transfers.

Each agent i∈I receives a local observation oi(t)∈Oi that
includes only partial state:

oi(t) =
(
ci(t), Ui(t), ĥi(t), R̂bh

i (t), v̂i(t),

local queues, mi(t)
)
,

(23)

where ci(t) is the capability vector of edge i (available band-
width, compute headroom), Ui(t) is the set of attached vehicle
requests with payload sizes, ·̂ are local/neighbor estimates, and
mi(t) is the received cooperation message under a limited
message budget. The observation kernel is Z(ot|st), possibly
influenced by previous actions and message policies.

The joint action at = (ai(t))i∈I factorizes across agents
with feasibility induced by resource constraints. For edge i,
we define a compact action composition.

ai(t) =
(
ri(t), xi(t), ui(t)

)
, (24)

where ri(t) allocates radio/compute to served vehicles (e.g.,
{Bul/dl

i,n (t)}, {fi,n(t)}, P dl
i (t)), xi(t) routes tasks to peer edges

or cloud (migration/forwarding choices), and ui(t) triggers
model operations (e.g., send/receive patches for a subset of
services). The admissible set embeds hard constraints,

Ai(oi) =
{
ai :

∑
n

Bul/dl
i,n ≤Bul/dl

i ,
∑
n

fi,n≤fmax
i ,

0≤P dl
i ≤Pmax

i

}
.

(25)

State transitions follow the stochastic dynamics induced
by mobility, wireless fading, queue evolution, and update
operations:

T (st+1 | st, at) = Pr
(
st+1 given st and at

)
, (26)

where service versions {vm,k} evolve under ui, queues evolve
under ri and xi, and channels/backhaul follow exogenous
processes.

The team reward aggregates QoS and costs over all served
(n, k) in slot t:

R(st, at) =
∑

(n,k)∈U(t)

[wq qn,k(t)− wT T e2e
n,k(t)− wE En,k(t)

]
−wC Ξt,

(27)

where qn,k(t) follows the saturating model, T e2e
n,k(t) sums

communication/backhaul/processing delays along the chosen
route, En,k(t) accounts for radio and compute energies, and Ξt
penalizes constraint violations or excessive migration/updates.
We aim to maximize the discounted return

J(ψ) = Eπψ
[ T∑
t=0

γtR(st, at)
]
, (28)
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with a joint policy that factorizes into decentralized actors
πψ(at|ot) =

∏
i∈I πψi

(
ai(t) | oi(t)

)
. In practice we adopt

centralized training and decentralized execution (CTDE),
where a centralized critic Qω(st, at) or a monotonic mixing
network estimates joint value while each edge runs πψi

using
only oi(t) and messages mi(t). This Dec-POMDP formaliza-
tion naturally supports cooperative MARL for joint resource
scheduling, task migration, and model updating under partial
observability and hard system constraints.

B. Intent-Driven Multi-Agent Communication
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Fig. 2. Intent-driven multi-agent communication network architecture.

Multi-agent reinforcement learning (MARL) greatly bene-
fits from communication mechanisms. However, many existing
methods rely on attention structures that learn correlations
from instantaneous observations, which may be insufficient
for the dynamic and goal-oriented coordination required in
vehicular networks. To address this, we propose IDMAC
(Intent-Driven Multi-Agent Communication). While built upon
the established concepts of latent variables and attention,
IDMAC’s novelty lies in synthesizing them to explicitly model
an agent’s short-term “intent”. This intent, encoded from
the agent’s recent trajectory, provides a semantic, forward-
looking representation of its objective. By conditioning both
message and environment attention mechanisms on this dy-
namic intent variable, agents can communicate their goals
proactively, rather than just their current states. This approach
helps overcome the limitations of relying on static correlations
in conventional attention, enabling more adaptive and efficient
collaboration. The algorithmic details of IDMAC are as shown
in algorithm 2.

The IDMAC framework enhances multi-agent communica-
tion by combining short-term intent modeling with attention
mechanisms. The architecture follows the CTDE paradigm,
where agents communicate through intent-driven message and
environment attention.

1) Intent Encoder: Each agent encodes its trajectory τ ti =
(o1i , a

1
i , . . . , o

t
i) using a GRU to obtain hti. Intent encoder maps

(hti, a
t−1
i ) into Gaussian parameters (µti, δ

t
i), and a latent intent

variable is sampled:

gti ∼ N (µti, (δ
t
i)

2). (29)

Reparameterization gti = µti + δti ⊙ ϵ, ϵ ∼ N (0, I) allows
differentiability and controllable stochasticity. Intent encoder
overcomes the limitation of using only instantaneous obser-
vations, encodes historical context, and provides semantic
guidance for subsequent attention modules.

2) Message Attention: Intent gti serves as Query, while
teammates’ intents {gtj} act as Key/Value. The attention
weights are computed as:

αtij = softmax

(
(WQg

t
i)(WKg

t
j)

⊤
√
dk

)
, (30)

ĝti =
∑
j ̸=i

αtijWV g
t
j + gti , (31)

which selects the most relevant teammates, reduces redundant
communication, and enhances efficiency by aligning messages
with task goals.

3) Environment Attention: The aggregated intent ĝti is used
as Query over local hidden state hti:

βti = softmax
(
(WQĝ

t
i)(WKh

t
i)

⊤
√
dk

)
, (32)

ĥti =
∑

βtiWV h
t
i, (33)

which suppresses noisy or irrelevant local features, emphasizes
goal-related observations, and improves the interpretability of
environmental representation.

4) Regularization Losses: Entropy loss encourages distri-
butional diversity:

Lentropy = − 1
2

n∑
i=1

(
(µti)

2 + (δti)
2 − log((δti)

2)− 1
)
, (34)

while continuity loss enforces temporal smoothness:

Lcontinuity = − 1
K

K∑
k=1

cos(gti , g
t−k
i ), (35)

which can guarantee discriminability, reduce fluctuations, and
enhance the robustness of intent-guided communication.

Let st denote the mixing-network input (e.g., global state)
and Qtot(st,at; θ) the joint action-value. With target parame-
ters θ̄ and discount γ,

yt = rt + γ (1− donet) max
a′

Qtot(st+1,a
′; θ̄), (36)

LTD = Et
[(
yt −Qtot(st,at; θ)

)2]
. (37)

5) Total Objective: The overall training loss is:

Ltotal = LTD + βcontLContinuity + βentLEntropy, (38)

which balances task performance with intent quality, enabling
semantic-rich and temporally stable intent learning.
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6) Algorithmic Complexity Analysis: To evaluate the scal-
ability of IDMAC, we analyze its computational complexity.
The algorithm is executed in a decentralized manner by each
of the M edge servers (agents). For a single agent at each
time step, the primary computational costs are associated with
the core components of the IDMAC architecture:

• Intent Encoder: The GRU-based encoder processes the
agent’s local trajectory information. Its complexity de-
pends on the size of the hidden state, which is a fixed
hyperparameter, not on the number of agents or vehicles.
Thus, its complexity is O(1).

• Message Attention: This is the most significant compo-
nent in terms of inter-agent coordination. Each agent uses
its intent as a query to compute attention scores against
the intents of all other M − 1 agents. This operation has
a complexity of O(M).

• Environment Attention: This mechanism operates on
the agent’s local observations and hidden states, which
are of a fixed dimension. Therefore, its complexity is also
O(1).

The overall computational complexity for a single agent
per decision step is dominated by the message attention
mechanism, resulting in a complexity of O(M). Critically, this
complexity scales linearly with the number of edge servers M ,
not the number of vehicles N . In typical large-scale vehicular
networks, M << N . This ensures that the decision-making
overhead of IDMAC remains computationally tractable and
scales effectively, even as the number of vehicles in the system
grows into the thousands.

In summary, IDMAC establishes a closed-loop pipeline of
“intent modeling – communication alignment – environmental
filtering – regularization,” addressing limitations of static at-
tention. Each module fulfills a distinct role: the intent encoder
provides semantic direction, message attention enhances com-
munication efficiency, environment attention improves state
relevance, and regularization guarantees robustness. Together,
they enable adaptive and goal-aligned communication in dy-
namic multi-agent tasks.

V. PERFORMANCE EVALUATION

A. Experiment Setting

The simulation environment is based on real taxi trajectories
from Xicheng District, Beijing. We set Nv={50, 100, 200}
vehicles and Ne = {6, 12} edge servers, each with a coverage
radius of 800m. Vehicle–edge associations evolve dynamically
along trajectories, capturing realistic spatio-temporal traffic
patterns. Each episode lasts T = 60 steps, corresponding to
60 minutes. Task categories are K = 6, with prior distribution
from LaMPilot-Bench [27]:{0.2455, 0.2455, 0.0415, 0.3025,
0.0825, 0.0825}. Task size s ∼ lnN (µ = ln(0.1), σ = 1)
ranges from KB to tens of MB. Task importance I ∼
Beta(0.5, 2.0), mostly low-to-medium importance. If a ve-
hicle has zero capability on task k, a request r = 1 is
triggered. Capability upper bound is Cmax = 1.0: vehicles
start at 0, edge primary functions at 0.6, and cloud at 0.6.
The cloud fine-tunes every 20 steps and updates via OTA:
ccloudk = ccloudk + α ·

(∑
d∈Dk

Id

)
·
(
1− ccloud

k

Cmax

)
, α = 0.01.

Algorithm 2 IDMAC: Training and Execution Procedure
Input: Trajectories {τi}, replay buffer D, episodes E, horizon

T
Input: Networks: GRU(ψ), VAE(ϕ), Attn(WQ,WK ,WV ),

Qi(·; θi), Mixer Qtot(·; θm)
Input: Coefficients βent, βcont, window K, discount γ, lr η
Output: Trained params Ψ = {ψ, ϕ,WQ,WK ,WV , θi, θm}

1: Init Ψ; target params Ψ̄← Ψ; buffer D ← ∅
2: for episode = 1 to E do
3: Reset env; for all agents i, reset GRU state
4: for t = 1 to T do
5: Observe oti; form xti = (oti, a

t−1
i )

6: hti ← GRUψ(h
t−1
i , oti)

7: (µti, δ
t
i)← VAEϕ(h

t
i, a

t−1
i )

8: Sample gti = µti + δti ⊙ ϵ, ϵ ∼ N (0, I)
9: {Message attention (standard scaled dot-product)}

10: qi =WQg
t
i ; kj =WKg

t
j ; vj =WV g

t
j

11: αtij = softmaxj

(
qik

⊤
j√
dk

)
12: ĝti =

∑
j ̸=i α

t
ijvj + gti

13: {Environment attention (intent-guided filtering)}
14: q̃i =WQĝ

t
i ; k̃i =WKh

t
i; ṽi =WV h

t
i

15: βti = softmax
(
q̃ik̃

⊤
i√
dk

)
16: ĥti =

∑
βti ṽi

17: {Action selection and env step}
18: ati ∼ π(a| ĥti) (e.g., ϵ-greedy over Qi)
19: Execute at, observe rt, ot+1, done
20: Store (ot,at, rt, o

t+1, {gti}) in D
21: if done then
22: break
23: end if
24: end for
25: {Training with mini-batches from D}
26: for each minibatch B ⊂ D do
27: Recompute hti, g

t
i , ĝ

t
i , ĥ

t
i on B

28: Qti ← Qi(ĥ
t
i; θi)

29: Qttot ← Qtot(st,a
t; θm)

30: yt = rt + γ(1− donet)maxa′ Qtot(st+1,a
′; θ̄)

31: LTD = EB[(yt −Qttot)2]
32: LEntropy = − 1

2

∑
d[(µ

t
i,d)

2+(δti,d)
2−log((δti,d)2)−1]

33: LCont = − 1
K

∑K
k=1 cos(g

t
i , g

t−k
i )

34: Ltotal = LTD + βentLEntropy + βcontLCont

35: Ψ← Ψ− η∇ΨLtotal

36: Ψ̄← τΨ+ (1− τ)Ψ̄ {target update}
37: end for
38: end for
39: Execution (deployed): freeze Ψ; run lines 5–18; no

updates

Each edge server has Cedge = 100GHz. Task demand is 20
Gigacycles/(MB·Importance). The uplink bandwidth is 1000
Mbps; the fiber bandwidth is 10,000 Mbps. Power settings:
Pc = 150W (compute), Pt = 50W (uplink), Pf = 20W
(fiber). Wireless links follow Shannon’s formula with N0 =
4× 10−21 W/Hz and path loss exponent γ = 3.0. The reward
includes task score St, system cost Ct, model gain Mt, and
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Fig. 10. Average latency in 200 vehi-
cles and 12 edge servers scenario.

latency penalty Lt. Task score is normalized by Sigmoid
(θ = 0.6, τ = 0.1). Latency threshold is set to 1s to ensure
real-time responsiveness.

B. Comparison Algorithm

Six benchmark algorithms are used to evaluate the proposed
IDMAC algorithms: 1) Random: Randomly generates the task
offloading and resource allocation strategy from [0, 1] [28];
2) Greedy: Always chooses the action with the highest
immediate reward, reflecting greedy decision-making [29].
3) Genetic: Explores solutions using evolutionary operators
such as selection, crossover, and mutation, widely applied to
combinatorial optimization [30]. 4) VDN: Decomposes the
global Q-value into a sum of individual Q-values, providing a
simple and effective CTDE method [31]. 5) QMIX: Employs
a mixing network to factorize individual Q-values monotoni-
cally into a joint Q-value, enabling centralized training with
decentralized execution [32]. 6) QPLEX: Extends QMIX with
duplex advantage decomposition, allowing more flexible joint
value modeling [33]. These algorithms are chosen as they
represent foundational and effective CTDE methods, providing
a solid basis for evaluating the specific performance gains
attributable to our proposed IDMAC communication mech-
anism. While other important research areas like vehicular-
edge LLM updating frameworks and federated adaptation
address related challenges, our focus here is on the decision-
making and coordination aspect within a multi-agent system,
for which VDN, QMIX, and QPLEX serve as highly relevant
benchmarks.

C. Experiment Performance

1) Convergence Performance: The experimental results
demonstrate that IDMAC achieves superior convergence and
performance across different vehicular scales. As shown in

Fig. 3, the return curve of IDMAC rises rapidly and reaches
a stable level with fewer training episodes, surpassing all
baseline methods. As the network scale increases from 50
to 200 vehicles, as presented in Fig. 4 to Fig. 5, IDMAC
consistently exhibits smooth and stable convergence, while
traditional methods such as QMIX, QPLEX, and VDN tend
to converge slowly or display noticeable oscillations. These
observations demonstrate that IDMAC effectively coordinates
the interactions between edge servers and vehicles, maintain-
ing efficient learning dynamics even in mid-scale vehicular
systems. To further evaluate scalability, we extend the ex-
periment to a larger configuration involving 12 edge servers
and 200 vehicles, as shown in Fig. 6. The results reveal
that IDMAC continues to achieve stable convergence and
superior final returns, confirming that the proposed algorithm
not only performs robustly under moderate workloads but also
scales gracefully to more complex and large-scale vehicular
networks. This consistent trend across all experimental set-
tings highlights the scalability, robustness, and adaptability of
IDMAC in distributed multi-agent coordination scenarios.

The performance superiority of IDMAC stems from its
intent-driven modeling and attention mechanisms. The in-
tent encoder abstracts vehicles’ personalized demands, while
message attention facilitates efficient cross-edge information
exchange by suppressing redundant communication. Environ-
ment attention enables edge servers to filter irrelevant obser-
vations and concentrate on task-related features. Furthermore,
entropy and continuity regularizations ensure diversity and
stability of intent representations, which helps the system
maintain consistency and efficiency even under larger scales
and dynamic conditions. Overall, IDMAC consistently outper-
forms baselines in terms of convergence speed, stability, and
final performance.

2) Network Performance Analysis: The experimental re-
sults demonstrate the advantages of IDMAC from two perspec-

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2025.3644688

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on December 17,2025 at 02:19:02 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 10

485

490

495

500

En
er

gy
 C

on
su

m
pt

io
n 

(J) 501.02

491.31

501.28

491.82

502.46

491.87

484.50

Average System Cost

Random
Greedy

GeneticPolicy
QMIX

QPLEX
VDN

IDMAC

Fig. 11. Average cost in 50 vehicles
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Fig. 12. Average cost in 100 vehicles
and 6 edge servers scenario.
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Fig. 13. Average cost in 200 vehicles
and 6 edge servers scenario.
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Fig. 14. Average cost in 200 vehicles
and 12 edge servers scenario.
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in 50 vehicles and 6 edge servers
scenario.
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Fig. 16. Average model improvement
in 100 vehicles and 6 edge servers
scenario.

0.76

0.78 0.781

0.425

0.256

0.761 0.764 0.762

0.774

Average System Model Improvement

0.0

0.2

0.4

0.781

0.425

0.256

0.761 0.764 0.762 0.774

M
od

el
 Im

pr
ov

em
en

t

Random
Greedy

GeneticPolicy
QMIX

QPLEX
VDN

IDMAC

Fig. 17. Average model improvement
in 200 vehicles and 6 edge servers
scenario.
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Fig. 18. Average model improvement
in 200 vehicles and 12 edge servers
scenario.
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Fig. 19. Average service score in 50
vehicles and 6 edge servers scenario.
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Fig. 20. Average service score in 100
vehicles and 6 edge servers scenario.
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Fig. 21. Average service score in 200
vehicles and 6 edge servers scenario.
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Fig. 22. Average service score in 200
vehicles and 12 edge servers scenario.

tives: network performance metrics and user service quality. In
terms of network performance, IDMAC achieves consistently
lower latency and reduced energy consumption compared with
existing methods. In terms of service quality, it provides signif-
icantly higher user scores, especially in larger-scale vehicular
environments.

For average latency, Fig. 7, Fig. 8, Fig. 9 and Fig. 10
illustrate the results across different scales. With 50 vehicles,
IDMAC reduces latency by approximately 10%–15% com-
pared with decomposition-based methods (QMIX, QPLEX,
VDN) and by more than 25% compared with heuristic methods
(Random, Greedy). This indicates that even in small-scale
systems, IDMAC effectively mitigates congestion. At 100
vehicles, the overall network burden increases, leading to a
sharp latency rise for baselines, whereas IDMAC maintains
lower levels with a 15%–20% advantage. In the 200-vehicle
scenario, IDMAC consistently achieves the best performance,
converging stably and yielding around 2% lower latency than
the best baseline with 6 edge servers and more than 5% lower
latency with 12 edge servers, both nearly 40% lower than

heuristic methods. These results reveal that IDMAC’s schedul-
ing and optimization mechanisms ensure efficient response
under more complex and large-scale vehicular networks.

For average energy consumption, Fig. 11, Fig. 12, Fig. 13
and Fig. 14 show that IDMAC consistently outperforms others.
With 50 vehicles, it reduces energy by about 5% compared
with mainstream baselines. The advantage grows to 8% at
100 vehicles and nearly 10% at 200 vehicles with 6 edge
servers, while in the 200-vehicle scenario with 12 edge servers,
the advantage is close to 5%. Unlike traditional methods,
whose energy costs grow rapidly with scale, IDMAC remains
energy-efficient. The advantage comes from intent-driven com-
munication, which reduces redundant exchanges, and cross-
edge collaboration, which avoids repeated model transfers and
redundant computations.

User service quality: task completion score. User service
quality is measured using model improvement and task com-
pletion score.

For model improvement, Fig. 15, Fig. 16 Fig. 17 and
Fig. 18 show that IDMAC consistently surpasses baselines.
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With 50 vehicles, improvements are about 3%–5% compared
to decomposition-based methods, increasing to 6% at 100
vehicles. In the 200-vehicle scenario, IDMAC maintains the
top-performing status, achieving 4%–6% advantage with 6
edge servers and remaining the best model even with 12
edge servers. Traditional approaches suffer from resource
constraints and model drift, while IDMAC leverages task
capability abstraction and parameter-efficient fine-tuning to
achieve stable lifecycle updates.

For task completion score, Fig. 19, Fig. 20, Fig. 21, and
Fig. 22 illustrate the comparison. With 50 vehicles, IDMAC
scores around 3% higher than mainstream baselines and 5%
higher than heuristics. At 100 vehicles, the margin grows to
5%, and at 200 vehicles, IDMAC achieves 6%–7% higher
scores with 6 edge servers, while remaining among the top-
performing models when extended to 12 edge servers. This
confirms that IDMAC effectively captures personalized de-
mands and aligns them with model capabilities through intent
modeling and attention mechanisms, ensuring stable service
quality under dynamic and large-scale conditions.

The observed improvements can be attributed to the design
principles of IDMAC. The intent encoder abstracts vehicle
task demands into compact representations, capturing person-
alization while avoiding redundant state transmission. The
message attention mechanism selectively aggregates essen-
tial cross-edge information, reducing communication overhead
and enabling efficient allocation of model patches and task
capabilities. The environment attention module allows edge
servers to focus on task-relevant features, achieving efficient
decision-making under limited computational resources. Fi-
nally, entropy and continuity regularizations ensure diversity
and temporal smoothness of intent representations, which help
the system maintain stability and efficiency under large-scale
and dynamic conditions.

Overall, IDMAC achieves continuous advantages in both
network performance and service quality. Its reduced latency
and energy consumption ensure real-time responsiveness and
energy efficiency in vehicular networks, while its higher user
scores reflect superior support for personalization and global
coordination. These results validate the effectiveness and su-
periority of IDMAC as a vehicle–edge–cloud collaborative
optimization framework in complex environments.

3) Ablation Study: To further examine and validate the
effectiveness of our algorithmic design, we conduct ablation
experiments under the 200 vehicles and 6 edge servers sce-
nario. Each curve in Fig. 23 represents the averaged results
over multiple random seeds to eliminate randomness and
ensure statistical reliability. Overall, the experimental results
clearly demonstrate that each component of our proposed
algorithm contributes effectively to performance improvement.
Moreover, we observe that IDMAC-w/o-CL achieves better
final convergence performance than IDMAC-w/o-EL, which
may indicate that, in this experimental setting, the diversity
of intentions plays a more critical role than their short-term
continuity.
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Fig. 23. Ablation studies of proposed algorithm in 200 vehicles and 6
edge servers scenario. CL denotes the intention continuity loss Lcontinuity; EL
denotes the intention entropy loss Lentropy; and BL denotes the combination
of both.

VI. CONCLUSION

This paper addresses the challenges of deploying and updat-
ing vehicular large language models by proposing a vehicle-
edge-cloud collaborative framework featuring the Intent-
Driven Multi-Agent Communication (IDMAC) mechanism.
Our approach uses parameter-efficient fine-tuning and intent-
driven scheduling to balance personalization with global con-
sistency. Experimental results demonstrate that IDMAC ex-
hibits strong convergence, reducing average latency and energy
consumption by approximately 10%-20% while improving
user service quality by 4%-7% over existing methods. Beyond
these performance metrics, the framework is designed for
practical deployment. The edge-centric architecture inherently
enhances user privacy by localizing data processing. Hardware
feasibility is achieved by deploying lightweight adapters on
vehicles and offloading intensive computations to edge and
cloud servers, while standard security protocols are assumed
for all communications. These findings validate the effec-
tiveness, superiority, and real-world viability of our proposed
framework in complex and dynamic vehicular environments.
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